Identitas Pythagorean
- sin2 x + cos2 x=1
- tan2 x +1 = sec2 x
- cot2 x +1 = csc2 x
- sin2 x = [1- cos 2x]/2
- cos2 x = [1+ cos 2x]/2
Tipe-tipe Integrasi Trigonometri
- ∫ sinn x dx dan ∫ cosn x dx
- ∫ sinm x cosn x dx
- ∫ sin mx cos nx dx ; ∫ sin mx sin nx dx ; dan ∫ cos mx cos nx dx
- ∫ tann x dx dan ∫ cotn x dx
- ∫ tanm x secn x dx dan ∫ cotm x cscn x dx
Materi lengkap dapat didownload di bawah ini.
Download PDF
Materi Sebelumnya : Teknik Integrasi
Materi Selanjutnya :
Dalam melakukan integritas Trigonometri perlu teknik yang cepat dan terdapat beberapa identitas trigonometri yaitu: Identitas Pythagorean, Identitas Setengah sudut dan Tipe Tipe Integrasi Trigonometri
BalasHapusYang bener aja, masak ada integritas.
HapusKomentar ini telah dihapus oleh pengarang.
BalasHapus1. Integral sin^2 x dx=integral 1-cos 2x/2 dx
BalasHapus=integral 1/2 dx-
integral 1/2 cos 2x dx
=1/2x - 1/4 sin 2x + C
Komentar ini telah dihapus oleh pengarang.
BalasHapusBentuk integral trigonometri memiliki 5 tipe:
Hapus1. ∫ sin^n x dx dan ∫ cos^n x dx
2. ∫ sin^m x cos^n x dx
3. ∫ sin mx cos nx dx ; ∫ sin mx sin nx dx ; dan ∫ cos mx cos nx dx
4. ∫ tan^n x dx dan ∫ cot^n x dx
5. ∫ tan^m x sec^n x dx dan ∫ cot^m x csc^n x dx
Saya akan mencoba menjawab soal latihan yang bapak kasih
BalasHapus1. Integral (sin^2)x dx = (1/2)x-(1/4)sin 2x+C
2. Integral (sin^3)x dx = cosx-(1/3)(cos^3)x+C
2. -cosx + 1/3 + cos³x + c
BalasHapus5. 1/3 tan³x - tanx + x + c
Komentar ini telah dihapus oleh pengarang.
BalasHapus4. 1/10 sin5x + 1/6 sin3x + c
BalasHapus5. integral tan^4 x dx
BalasHapus= integral tan² x tan² x dx
= integral tan² x (sec²- 1) dx
= integral tan² x sec² x - integral tan² x dx
= 1/3 tan³ x - tan x + x + c
1. 1/2x-1/4sin2x+c
BalasHapus5. 1/3 tan³x-tanx+x+c
Latihan
BalasHapus2. Integral Sin^3dx
= integral sin^2x SinX
= cos X-1/3cos^3x +c
5. Integral tan^4 x dx
= integral Tan^2 Tan^2 dx
= 1/3 Tan^3x - Tanx + x + c
Saya akan menjawab soal latihan yang bapak berikan
BalasHapusNo 6. -2tan^-1/2 x+2/3 tan^3/2 x+c
No 7. 2/3 sec^3/2 x+2 sec^-1/2 x+c
1) =1/2 x-1/4 sin 2x+c
BalasHapus2) = -cos x + 1/3 cos^3 x +c
2. ∫sin³x dx
BalasHapusSolusi :
∫sin³x dx = ∫sin x (1-cos² x) dx
= ∫sin x dx - ∫sin x cos² x dx
= -cos x + ⅓ cos³ x + C
Komentar ini telah dihapus oleh pengarang.
BalasHapus2. In sin^3 x dx
BalasHapus= In sin^2 x sin x dx
= In (1-cos^2) sin x dx
= In sin x - In sin x cos^2 x dx
= - cos x + cos x^3/3 + c
4) (Sin 3x)/6 + (Sin 5x)/10 + C
BalasHapus5) (Tan x^3)/3 - Tan x + x + C
Komentar ini telah dihapus oleh pengarang.
BalasHapusKomentar ini telah dihapus oleh pengarang.
BalasHapusDalam mempermudah penyelesaian integral trigonometri, maka dapat digunakan 3 bentuk identitas trigonometri, yaitu :
BalasHapus1.Identitas Pythagorean
2.Identitas Setengah Sudut
dan menggunakan Tipe-tipe Integrasi Trigonometri
latihan.
3. integral sin^3 (3x).cos^4 (3x) dx
misalkan u= cos 3x
integral -sin^3 (3x).cos^4 (3x). 1/3 du
integral -sin^3 (3x).u^4 (3x). 1/3 du
integral -(1-c0s(3x)^2)u^4)/3 du
integral (u^6-u^4 )/ 3
=cos ^7 (3x)/21 - cos ^5 (3x) / 15 + C
No. 4
BalasHapusIntegral [cos(x)cos(4x]dx= integral 1/2[cos(5x)+cos(-3x)]dx
= integral 1/2[cos(5x)+cos(3x)]dx
= 1/2 integral [cos(5x)+cos(3x)]dx
= 1/2 integral cos(5x)dx+ integral cos(3x)dx
= 1/2 [1/5 sin(5x) + 1/3 sin(3x)]
= 1/10 sin(5x)+1/6 sin 3x +C
Jawaban
BalasHapus1)∫sin^2 x dx
sin (x)^2 = (1-cos(2x))/2
∫sin^2 x dx
=∫(1-cos (2x))/2 dx
= 1/2 × ∫ 1 – cos (2x) dx
= 1/2 × (∫ 1 dx - ∫cos(2x) dx)
= 1/2 × (x - ∫cos(2x) dx)
= 1/2 × (x - sin(2x)/2) + C
= 1/2x - sin(2x)/4 + C
3) ∫sin^3 3x cos^4 3x dx
Misal :
u = cos (3x)
du/dx = - sin(3x) × 3
du = -sin(3x) × 3 dx
1/-sin(3x) × 3 du = dx
∫sin^3 3x cos^4 3x dx
= ∫sin^3 3x cos^4 3x × 1/-sin(3x) × 3 du
= ∫-sin^3 3x cos^4 3x × 1/sin(3x) × 3 du
= ∫-(sin(3x)^(2) cos(3x)^(4))/3 du subs cos(3x) dengan u
= ∫-sin(3x)^(2)× u^4/3 du
= ∫-1-cos(3x)^2 × u^4/3 du
= ∫-(1-u^2) × u^4/3 du
= ∫- u^4 - u^6/3 du
= 1/3 × ∫u^6 - u^4 du
= 1/3 × (u^7/7 - u^5/5) + C
= 1/3 × (cos(3x)^7/7 - cos(3x)^5/5) + C
= (cos(3x)^7/21 - cos(3x)^5/15) + C
∫▒/
1. Int sinx dx = - cos x dx
BalasHapus2. Int sin^3 x dx
= Int (1-cos^2 x) sin x dx
= Int sin x dx + Int cos^2 x (-sin x ) dx
= - cos x + C + Int u^2 du
= - cos x + C + 1/3 u^3 + C
= - cos x + C + 1/3 cos^3 x +C
= - cos x + 1/3 cos^3 x + C
1. 1/2x - 1/4sin 2x + c
BalasHapus2. -cos x + 1/3 cos^3x + c
Assalamualaikum warahmatullahi wabarakhatuh. Baiklah saya akan menjawab pertanyaan no 2
BalasHapusInt sin³xdx=int sin²x sinx dx = int (1-cos²x) dcosx
Misalkan cosx=u
Int (1-u²)du=u- (1/3)u³ +c
= Cosx -1/3 cos³x + c
Beberapa identitas trigonometri yang diperluhkan adalah sebagai berikut:
BalasHapus1.identitas pitagoras
(Sin^2)x+(cos^2)x=1
1+(tan^2)x=(sec^2)x
1+(cot^2)x=(csc^2)x
2.identitas setengah sudut
(Sin^2)x=1-cos 2x/2
(Cos^2)x=1+cos2x/2
2. ∫ sin^3 x dx = ∫ sin^2 x (sinx) dx
BalasHapus= ∫ (1-cos^2 x) (sinx) dx
= ∫ sin x - cos^2 (sinx) dx
= ∫sin x dx -∫cos^2 x sinx dx
= - cos x + 1/3 cos^3 x + C
1. Sin^2(x) dx
BalasHapus= Integral (1-cos(2x)/2 dx
=Integral 1/2 dx - integral cos(2x) dx
= 1/2 x - sin(2x)/2 + C
4. Integral cos(x) cos(4x)
= Integral 1/2 (cos(-3x) + cos (5x)) dx
=1/2 Integral cos(3x) + cos (5x) dx
= 1/2 Integral cos(3x) dx + integral cos(5x) dx
=1/2 (sin (3x)/3 + sin(5x)/5)
=Sin(3x)/6 + sin (5x)/10 + C
Dalam materi integrasi trigonometri ini, membahas tentang lima tipe integrasi trigobometri dan ditambah identitas trigonometri serta contoh-contoh dari setiap tipe yang sudah di jelaskan
BalasHapusRumus integral trigonometri melibatkan fungsi trigonometri yg meliputi sin, cos, tan, secan, cosec, dan cotan. Integral fungsi trigonometri dapat diselesaikan dengan integral subtitusi maupun integral parsial, hanya saja untuk menentukan nilai integral trigonometri terdapat rumus baku hasil integral trigonometri.
BalasHapus2.Int sin^3 x dx
BalasHapus= Int sin ^2 x.sin x dx
= Int (1-cos^2 x) d cos x
= Cos x – 1/3 cos ^3 x +c
Dalam melakukan integritas Trigonometri perlu teknik yang cepat dan terdapat beberapa identitas trigonometri yaitu: Identitas Pythagorean, Identitas Setengah sudut dan Tipe Tipe Integrasi Trigonometri
BalasHapusSaya akan mencoba menjawab soal no 1 dan 2.
1) =1/2 x-1/4 sin 2x+c
2) = -cos x + 1/3 cos^3 x +c
Jawaban soal No. 1
BalasHapus1. ∫ sin^2 x dx
= ∫ 1 - cos^2 x / (2) dx
= ∫ 1/2 dx - ∫ 1/2 cos 2x dx
= 1/2 x - 1/4 sin 2x + C
Dalam materi Integrasi Trigonometri, terbagi sub-bahasan yaitu : bentuk-bentuk integral trigonometri, identitas Pythagorean, identitas setengah sudut dan tipe-tipe integrasi trigonometri.
BalasHapusMenjawab Soal :
1) Integral sin^2 x dx
= integral (1-cos(2x))/2 dx
= integral 1/2 dx - integral 1/2 cos 2x dx
= 1/2 x - 1/4 sin2x + C
Tipe-tipe Integrasi Trigonometri
BalasHapus1. ∫ sinn x dx dan ∫ cosn x dx
2. ∫ sinm x cosn x dx
3. ∫ sin mx cos nx dx ; ∫ sin mx sin nx dx ; dan ∫ cos mx cos nx dx
4. ∫ tann x dx dan ∫ cotn x dx
5. ∫ tanm x secn x dx dan ∫ cotm x cscn x dx
Jawaban latihan soal :
1. (1/2 )x - (1/4) sin2x +C
2. Cos x - (1/3) (cos^3) x +C
3. Cos^7 (3x) /21 - cos^5 (3x) /15 +C
4. (1/10) sin5x + (1/6) sin3x +C
5. (1/3) (tan^3)x - tan x + x +C
6. -2 tan^-1/2 x + 2/3 tan^3/2 +C
7. 2/3 (sec^3/2)x + 2(sec^-1/2)x +C
1.)∫sin^2 x dx
BalasHapussin (x)^2 = (1-cos(2x))/2
∫sin^2 x dx
=∫(1-cos (2x))/2 dx
= 1/2 × ∫ 1 – cos (2x) dx
= 1/2 × (∫ 1 dx - ∫cos(2x) dx)
= 1/2 × (x - ∫cos(2x) dx)
= 1/2 × (x - sin(2x)/2) + C
= 1/2x - sin(2x)/4 + C
Jawaban nomor 5 :
BalasHapus5. (1/3) (tan^3) x - tan x + x + C
Saya akan menjawab no 1 dan 5
BalasHapus1. ∫sin² x dx = In ½ (1-cos 2x) dx
=½ In (1-cos 2x) dx
=½ (x-½ sini 2x) + c
=½x - ¼ sini 2x + c
5. In tan⁴ x dx
=tan³x/3 - In tan² x dx
=tan³x/3 - In (sec² x-1) dx
=tan³x/3 - (tan x-x) + c
=x-1 1/3 tan³ x - tan x+c
Pembahasan rumus integral trigonometri melibatkan fungsi trigonometri yang meliputi sin, cos, tan, sec, cosec, dan cotan. Seperti cara menentukan nilai integral fungsi lainnya, integral fungsi trigonometri dapat juga diselesaikan dengan metode integral substitusi atau integral parsial.
BalasHapusSaya akan menjawab pertanyaan nomer 4. ∫cosx cos4x dx
BalasHapus= ∫½[cos(4+1)x cos(4-1)x] dx
= ∫½[cos5x cos3x] dx
= ½∫cos5x dx + ½∫cos3x dx
= ½(1/5)cos5x + ½(⅓)cos3x + C
= 1/10 cos5x + 1/6 cos3x + C
1.)∫sin^2 x dx
BalasHapus=∫(1-cos (2x))/2 dx
= 1/2 . ∫ 1 – cos (2x) dx
= 1/2 . (∫ 1 dx - ∫cos(2x) dx)
= 1/2 . (x - ∫cos(2x) dx)
= 1/2 . (x - sin(2x)/2) + C
= 1/2x - 1/4sin(2x) + C
Jawaban no 4.
BalasHapusIntegral dari cos x cos 4x dx = 1/2 integral [cos (1+5)x + cos (1-4)x ] dx
= 1/2 integral [ cos 5x + cos (-3)x ] dx
= 1/2 (1/5) sin 5x + (1/3) sin (3)x + C
= 1/10 sin 5x + 1/6 sin 3x + C
Link kuis
BalasHapushttps://docs.google.com/forms/d/e/1FAIpQLSdcMpO0SKTM3XwdzQTHVcL4zR0aRv9y0iis9lOPwsk6f9qUnQ/viewform
Maaf pak baru komen skarang hp saya td dibenerin pak. Maaf pak 🙏🏻
BalasHapus1. (1/2 )x - (1/4) sin2x +C
2. Cos x - (1/3) (cos^3) x +C
3. Cos^7 (3x) /21 - cos^5 (3x) /15 +C
4. (1/10) sin5x + (1/6) sin3x +C
5. (1/3) (tan^3)x - tan x + x +C